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Abstract 
 
Existing general definitions of beta diversity often produce a beta with a hidden 
dependence on alpha. Such a beta cannot be used to compare regions that differ in alpha 
diversity. To avoid misinterpretation, existing definitions of alpha and beta must be 
replaced by a definition which partitions diversity into independent alpha and beta 
components. The unique such definition is derived here. When these new alpha and beta 
components are transformed into their numbers equivalents (effective numbers of 
elements), Whittaker’s multiplicative law (alpha · beta = gamma) is necessarily true for 
all indices. The new beta gives the effective number of distinct communities. The most 
popular similarity and overlap measures of ecology (Jaccard, Sorensen, Horn, and 
Morisita-Horn indices) are monotonic transformations of the new beta diversity. Shannon 
measures follow deductively from this formalism and do not need to be borrowed from 
information theory; they are shown to be the only standard diversity measures which can 
be decomposed into meaningful independent alpha and beta components when 
community weights are unequal.  
 
Keywords: Diversity, alpha, beta, gamma, Shannon, partition, independent, Horn, 
Morisita-Horn  
 
 
1. Introduction 
 
Alpha, beta, and gamma diversities are among the fundamental descriptive variables of 
ecology and conservation biology, but their quantitative definition has been controversial. 
Traditionally alpha, beta, and gamma diversities have been related either by the additive 
definition Hα + Hβ = Hγ or the multiplicative definition Hα·Hβ = Hγ. However, when these 
definitions are applied to most diversity indices, they produce a beta which depends on 
alpha. This hidden dependence on alpha can lead to spurious results when researchers 
compare beta values of regions with different alpha diversities.  
 
For example, suppose an ecologist applies the additive definition of beta to the Gini-
Simpson index (Lande 1996, Veech et al. 2002, Keylock 2005) to calculate the beta 
diversity of two samples of flowering plants from the antarctic tundra. The only 
flowering plants in Antarctica are Colobanthus quitensis and Deschampsia antarctica. In 
the first tundra sample (a 50 hectare plot) the proportions might be 60% C. quitensis, 
40% D. antarctica. In the second tundra sample (another 50 ha plot), the proportions 
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might be 80% C. quitensis and 20% D. antarctica.  Ecologists would agree that these 
samples, which share all their species and differ only slightly in species frequencies, 
should exhibit a relatively low beta diversity. The beta diversity is 0.021 according to the 
additive definition used with the Gini-Simpson index. 
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Now the same ecologist wants to compare this beta diversity to the beta diversity of the 
trees >1cm diameter of two tropical rainforest 50 ha plots, one from Panama (Barro 
Colorado Island; Condit et al.2005) and one from Malaysia (Pasoh; He 2005 and pers. 
com., Gimaret-Carpentier et al.1998). These rainforest plots are on different continents 
and share no species of trees, and ecologists would agree that these samples should 
exhibit considerably higher beta diversity (as this term is used in theoretical discussions) 
than the homogeneous antarctic samples. However, the alpha Gini-Simpson index is 
0.9721 and the gamma Gini-Simpson index is 0.9861; the beta diversity is 0.9861 - 
0.9721 = 0.014. This value of beta is 33% lower than the antarctic beta diversity. The 
additive beta definition fails to rank these data sets correctly because the beta it produces 
is confounded with alpha. (When diversity is high, Gini-Simpson alpha and gamma both 
approach unity. Therefore if beta is defined as gamma minus alpha, beta must approach 
zero whenever alpha diversity is high, regardless of the turnover between samples.) The 
multiplicative definition also fails for many indices, for the same reason.  
 
If beta diversity is to behave as ecologists expect, we must develop a new general 
expression relating alpha, beta, and gamma, and the new expression must ensure that beta 
is free to vary independently of alpha. In fact, this requirement and ecologists’ other 
requirements for an intuitive measure of beta are sufficiently strong that they can be taken 
as axioms, and a new general mathematical expression relating alpha, beta, and gamma 
can be logically derived from these axioms. This approach ensures that beta behaves as 
ecologists expect and measures what ecologists really want to measure. By removing the  
hidden alpha dependence often produced by the old definitions of beta, the new 
expression opens the way for researchers to focus on biologically meaningful aspects of 
beta. The new method of partitioning, derived directly from biologists’ requirements, 
gives results that agree with standard practice in information theory and physics, and 
leads to a unified mathematical framework not only for diversity measures but also for 
ecology’s most popular similarity and overlap measures. The Sorensen, Jaccard, 
Morisita-Horn, and Horn indices all turn out to be simple monotonic transformations of 
the new beta diversity.  
 
 
2. Basic properties of intuitive alpha and beta 
 
There is general agreement that alpha and beta should have the following properties, 
which I take as axioms in the derivations which follow:  
 
1. Alpha and beta should be free to vary independently; a high value of the alpha 
component should not, by itself, force the beta component to be high (or low), and 
vice versa. Alpha and beta decompose regional diversity into two orthogonal 
components: a measure of average single-location (or single-community) diversity and a 
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measure of the relative change in species composition between locations (or 
communities). Since these components measure completely different aspects of regional 
diversity, they must be free to vary independently; alpha should not put mathematical 
constraints on the possible values of beta, and vice-versa. If beta depended on alpha, it 
would be impossible to compare beta diversities of regions whose alpha diversities 
differed. Wilson and Shmida (1984) were the first to make this an explicit requirement 
for beta. 
 
2. A given number should denote the same amount of diversity or uncertainty 
whether it comes from the alpha component, the beta component, or the gamma 
component, so that a diversity index could be meaningfully partitioned into within-
community and among-community components. Lande (1996) made explicit this 
useful property of beta, which is closely related to Property 1. 
 
 3. Alpha is some type of average of the diversity indices of the communities or 
samples that make up the region. To avoid imposing any preconceptions on the kind of 
average to use, I make only the minimal assumption that if the diversity index has the 
same value H0 for all communities in a region, then alpha must also equal H0.  
 
4. Gamma must be completely determined by alpha and beta. I make no assumption 
about how alpha and beta determine gamma. 
 
5. Alpha can never be greater than gamma. Lande (1996), following Lewontin (1972), 
pointed out that the partitioning of gamma into alpha and beta only makes sense if alpha 
were always less than or equal to gamma for a given diversity index. From the viewpoint 
of information theory, this property is a reasonable one. Most diversity indices may be 
considered generalized measures of uncertainty (Taneja 1989, Keylock 2005), and alpha 
may be considered the conditional uncertainty in species identity given that we know the 
location sampled. Gamma is the uncertainty in species identity when we do not know the 
location sampled. Knowledge can never increase uncertainty, so alpha can never be 
greater than gamma.  
 
These five relatively uncontroversial properties are strong enough to completely 
determine the new general index-independent expression which defines beta. This in turn 
permits the derivation of explicit expressions for alpha and beta for almost any diversity 
index. To develop this new picture of alpha and beta diversity, it is necessary to deal with 
diversity indices in a more general way than is customary. The next section  provides the 
vocabulary and tools needed for this. 
 
 
3. The “numbers equivalents” of diversity indices 
 
The mathematical tool that permits the derivation of a general definition of beta is the 
concept of the “numbers equivalent” or “effective number of elements” of a diversity 
index. The concept is often used in economics (where the term originated; Adelman 
1969, Patil and Taillee 1982) and physics (where it is called the “number of states”), but 
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since it is unfamiliar to many ecologists it will be briefly reviewed here. 
 
The numbers equivalent of a diversity index is the number of equally-likely elements 
needed to produce the given value of the diversity index. Hill (1973) and Jost (2006) 
showed that the notion of diversity in ecology corresponds not to the value of the 
diversity index itself but to its numbers equivalent. (The derivations in the following 
sections do not depend on this interpretation of the numbers equivalent as the true 
diversity; the skeptical reader may treat numbers equivalents merely as useful 
mathematical tools for deriving the alpha, beta, and gamma components of traditional 
diversity indices.)  
 
To see the contrast between a raw index and its numbers equivalent, suppose a continent 
with 30 million equally common species is hit by a plague that kills half the species. How 
do some popular diversity indices judge this drop in diversity? Species richness drops 
from thirty million to fifteen million; according to this index the post-plague continent 
has half the diversity it had before the plague. This accords well with our biological 
intuition about the magnitude of the drop. However, the Shannon entropy only drops 
from 17.2 to 16.5; according to this index the plague caused a drop of only 4% in the 
“diversity” of the continent. This does not agree well with our intuition that the loss of 
half the species and half the individuals is a large drop in diversity. The Gini-Simpson 
index drops from 0.99999997 to 0.99999993; if this index is equated with “diversity”, the 
continent has lost practically no “diversity” when half its species and individuals 
disappeared. 
  
Converting the diversity indices in the preceding paragraph to their numbers equivalents 
makes them all behave as biologists would intuitively expect of a diversity. (See Table 1 
for the conversion formulas.) Species richness is its own numbers equivalent, so the 
numbers equivalent of species richness drops by 50% when the plague kills half the 
continent’s species. The Shannon entropy is converted to its numbers equivalent by 
taking its exponential (MacArthur 1965); this gives a post-plague to pre-plague diversity 
ratio of exp(16.5)/exp(17.2) which is exactly 50%, compared to the counterintuitive drop 
of 4% shown by the raw index. The Gini-Simpson index is converted to its numbers 
equivalent by subtracting from unity and taking the reciprocal (Jost 2006); this gives a 
post-plague to pre-plague diversity ratio of [1/(1- 0.99999993)]/[1/(1- 0.99999997)] = 
50% , again the intuitive number rather than the 0.000003% shown by the ratio of the raw 
indices. This example does not depend on all the species being equally common; if these 
30 million species had any smoothly varying frequency distribution, and half the species 
were randomly deleted, the numbers equivalents of these diversity indices would still 
drop by approximately half.  
 
Table 1. Conversion of common indices to true diversities (modified from Jost 2006). 
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The numbers equivalents of all standard diversity indices behave in this intuitive way 
because they all have the “doubling” property (Hill 1973): if two equally large, 
completely distinct communities (no shared species) each have diversity X, and if these 
communities are combined, then the diversity of the combined communities should be 
2X.  This natural semi-additive property is at the core of the intuitive ecological concept 
of diversity. Most raw diversity indices do not obey this property, but their numbers 
equivalents do. It is also this property which makes ratios of numbers equivalents behave 
reasonably (in sharp contrast to ratios of most raw diversity indices; see Jost 2006). 
 
Some new notation and definitions are needed to work efficiently with numbers 
equivalents. Almost all diversity indices used in the sciences -- species richness,  
Shannon entropy, exponential of Shannon entropy, Simpson concentration, inverse 
Simpson concentration, the Gini-Simpson index, Renyi entropies (Renyi 1970), Tsallis 
entropies (Keylock 2005), the Berger-Parker index, the Hurlbert-Smith-Grassle index for 

m = 2 (Smith and Grassle 1977), and others-- are functions of the basic sum , with 

q a non-negative integer, or limits of such functions as q approaches unity. All such 
measures will be called “standard diversity indices” and will be symbolized by the letter 

H; the results of this paper apply to all such measures. The sums  which are at the 

heart of these measures will be symbolized by 

∑
=

S
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q
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a generalization of the notation for Simpson concentration λ =∑ . (In this notation 

Simpson concentration is 
=

S

1i

2
ip

2λ.) 
 
Every diversity measure H has a numbers equivalent, which will be symbolized qD or 
qD(H) or D(qλ). There is an unexpected unity underlying all standard diversity indices; 
their numbers equivalents are all given by a single formula: 

    qD = ( )∑
=

S

1i

q
ip 1/(1-q) =  (qλ) 1/(1-q).   (2) 

This expression was first discovered by Hill (1973) in connection with the Renyi 
entropies; Jost (2006) showed that it gives the numbers equivalents of all standard 
diversity indices. It is this unity which permits the derivation of general index-
independent formulas involving diversity. The number q, the value of the exponent in the 
basic sum underlying a diversity index,  is called the “order” of the diversity measure. 
Species richness is a diversity index of order zero, Shannon entropy is a diversity index 
of order one, and all Simpson measures are diversity indices of order two. The order q 
determines a diversity measure’s sensitivity to rare or common species (Keylock 2005); 
orders higher than 1 are disproportionately sensitive to the most common species, while 
orders lower than 1 are disproportionately sensitive to the rare species. The critical point 
that weighs all species by their frequency, without favoring either common or rare 
species, occurs when q = 1; Eq. 2 is undefined at q = 1 but its limit exists and equals 

    1D = exp( )    (3) ∑
=

−
S

1i
ii plnp

which is the exponential of Shannon entropy. This special quality of Shannon measures 
gives them a privileged place as measures of complexity and diversity in all of the 
sciences. It is striking that Shannon measures do not need to be borrowed from 
information theory but arise naturally from this formalism of numbers equivalents. 
 
It is important to distinguish a diversity index H from its numbers equivalent qD. Since 
the numbers equivalent of an index, not the index itself, has the properties biologists 
expect of a true diversity, the numbers equivalent qD of a diversity index of order q will 
be called the true diversity of order q. All diversity indices of a given order q have the 
same true diversity qD.   
 
The alpha, beta, and gamma components of a diversity index, Hα, Hβ and Hγ, can be 
individually converted to true alpha, beta, and gamma diversities by taking their numbers 
equivalents qD(Hα), qD(Hβ), and qD(Hγ). The reverse transformation from true alpha and 
beta diversities to alpha and beta components of particular indices is also sometimes 
useful. Any general expression based on the properties of numbers equivalents can be 
transformed into index-specific relations by simple algebra using the transformations in 
Table 1. The derivations in the following sections are based on this idea.  
 
 4. Decomposing a diversity index into independent components 
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Numbers equivalents permit the decomposition of any diversity index H into two 
independent components, which we may symbolize as HA and HB. These components 
may be alpha and beta diversity, or they may be any other pair of orthogonal qualities, 
like evenness and richness (Buzas and Hayek 1996). Suppose HA has a numbers 
equivalent of x equally likely outcomes, and orthogonal HB has a numbers equivalent of y 
equally likely outcomes. Then if HA and HB are independent and completely determine 
the total diversity, the diversity index of the combined system must have a numbers 
equivalent of exactly xy equally likely outcomes; if it did not, some other factor besides 
those measured by HA and HB would be present, contrary to our assumption that those 
two components completely determined the total diversity. Thus: 
                  D(HA) · D(HB) = D(Htot).    (4) 
 
Working backwards from this simple mathematical relation between numbers 
equivalents, we can discover the correct decomposition of any standard diversity index 
into two independent components. The numbers equivalent of the Gini-Simpson index is 
    qD(H) = 1/(1- H)     (5) 
(Table 1) so Eq. 4 becomes 
    1/(1-HA) · 1/(1-HB) = 1/(1-Htot)   (6) 
Simplifying yields  
   Htot = HA + HB - HA · HB or HB = (Htot - HA)/(1 - HA)  (7) 
This, not the additive rule, defines the relationship between independent components of 
the Gini-Simpson index (Fig. 1). This is a well known equation in information theory 
(Aczel and Daroczy 1975) and physics (Tsallis and Brigatti 2004; see Keylock 2005). 
 
The same technique yields the decomposition of any other standard diversity index into 
two independent components, HA and HB. The results for some common indices are: 
 
  Species richness: HA·HB = Htot     (8a-g) 
  Shannon entropy: HA + HB = Htot
  Exponential of Shannon entropy: HA·HB = Htot
  Gini-Simpson index: HA + HB - (HA·HB) = Htot.    
  Simpson concentration: HA·HB = Htot
  HCDT entropies: HA + HB - (q-1)·(HA)·(HB )= Htot   
  Renyi entropies: HA + HB = Htot
         
Many of the above results are known in ecology, information theory, or physics, though 
they have never before been derived in a unified way. Equation 8a is Whittaker’s original 
definition of beta; 8b follows from Shannon’s (1948) information theory; 8c was 
proposed in ecology by MacArthur (1965); 8e was introduced by Olszewski (2004) in the 
context of beta diversity and by Buzas and Hayek (1996) in the context of 
richness/evenness; 8f and 8g are well known in generalized information theory. The 
derivation of these formulas is unique; no other decomposition of these indices can yield 
independent components. The decomposition varies between indices, so there is no 
universal multiplicative or additive rule at the level of individual indices. This explains 
why the traditional additive and multipicative definitions have both been popular; each 
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does work well for certain indices. The universal rule only appears at the level of the true 
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qDtot = qDA· qDB), showing that these are actually the more useful quantities 
for diversity analysis.  
 
 
5. Alpha and beta 
 
The previous section showed how to decompose any diversity measure into two 
independent components. Thus, if alpha and beta are to be independent (Property 1 of 
Section 2) the numbers equivalents of the alpha, beta, and gamma components of a 
diversity index must be related by  
    D(Hγ) = D(Hα)·D(Hβ).    (9) 
This is Whittaker’s law, here shown to be valid for the numbers equivalents of any 
diversity index. True beta diversity (the numbers equivalent of the beta component of any 
diversity index) thus has a uniform interpretation regardless of the diversity index used: it 
is the effective number of distinct communities or samples in the region. 

Under what circumstances can these components Hα and Hβ satisfy all the  requirements 
for an intuitive alpha and beta, Properties 1-5 of Section 2? Let us set aside Property 5 
(Lande’s requirement that alpha never exceed gamma) for the moment. Properties 1-4 are 
strong enough not only to give the decomposition equation above but also to give an 
explicit expression for the alpha and beta components of any standard diversity index. 
For q ≠ 1, 

 Hα ≡ H(qλα) =H{[w1
q (∑ )

=

S

1i

q
1ip  + w2

q ( )∑
=

S

1i

q
2ip  + ...] / [w1

q + w2
q + ...]} (10) 

 
[Digital Appendix Proof 1]. The true alpha diversity of order q is the numbers equivalent 
of that alpha component: 

 qDα ≡ D(qλα ) = {[w1
q ( )∑

=

S

1i

q
1ip  + w2

q ( )∑
=

S

1i

q
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q + ...]}1/(1-q) (11a) 

This is undefined at q = 1 but the limit as q approaches 1 exists and equals: 

 1Dα = exp[-w1∑
=

S

1i

(pi1 ln pi1 ) + - w2∑ (p
=

S

1i
i2 ln pi2 ) + ...]    (11b) 

which is the exponential of the standard alpha Shannon entropy. 
 
For any standard diversity index, alpha must take this form, and beta must be given by 
Eq. 9,  if they are to satisfy Properties 1-4. Now let us turn to Property 5, the requirement 
that alpha must never exceed gamma. The general expressions for alpha, Eqs. 11 and 12, 
are only consistent with Property 5 for certain combinations of q (the order of the 
diversity index) and wj (the statistical weights of the communities or samples). For other 
values of these variables, alpha may exceed gamma. This means that under some 
conditions, some diversity indices cannot be decomposed into independent alpha and beta 
components satisfying all of Properties 1-5. Property 5 acts as a filter on the permissible 
diversity indices for a given application. There are two distinct cases, which are treated 
separately: 
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Case 1: Alpha and beta when community weights are all equal 
 
Biologists often compare communities in the abstract, using alpha and beta and 
associated similarity measures to quantify differences in species compositions. In these 
kinds of comparisons the actual sizes of the communities are immaterial; the only things 
that matter are the species frequencies, and the community weights are therefore all taken 
to be equal. Weights will also be equal when some ecological dimension is divided into 
equal parts (each part contributing equally to the total pooled population), and in some 
other applications.   
 
When the N community weights wj are all equal, wj = 1/N and the alpha component of 
any diversity index (for q ≠ 1), Eq. 10, simplifies to 

        Hα = H[(1/N)(∑
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1i

q
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q
2ip  + ... + )] = H[(1/N)(∑
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and the true alpha diversity of order q (for q ≠ 1) , Eq. 11a, simplifies to  

  qDα ≡ D(qλα ) = {[1/N][( )∑
=
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q
1ip  + ( )∑
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q
2ip  + ... + ( )]}∑
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q
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For q =1 (Shannon measures) the traditional definitions are correct. The alpha Shannon 
entropy is the average of the Shannon entropies of the samples, and the true alpha 
diversity of order 1 (the numbers equivalent of Shannon alpha entropy) is for this case 
1Dα = exp{[-1/N][ (p∑

=

S

1i
i1 ln pi1 ) + (p∑

=

S

1i
i2 ln pi2 ) + ... + ∑ (p

=

S
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iN ln piN)]}.  (14) 

 
When community weights are equal, Eqs. 13 and 14 for alpha always satisfy Property 5, 
Lande’s condition that alpha never exceed gamma [Proof 2.] Therefore in this case (wj = 
1/N) there is no restriction on the allowable values of q, and all standard diversity indices 
are valid.  
 
Equation 12 differs slightly from the traditional definition of alpha. The alpha component 
of a diversity index is not the average of the diversity indices of the individual 
communities, as previously thought. Rather, we must average the basic sums qλ of the 
individual communities, and then calculate the diversity index of that average. For 
indices that are linear in the qλ (e. g. the Gini-Simpson index or species richness), the end 
result is the same as the traditional definition. For nonlinear diversity indices such as the 
Renyi entropy, however, the difference is important. As in all these new results, there is 
no choice about it; the new expression follows mathematically from the conditions on 
beta given in Section 2, and the traditional definition of alpha is logically inconsistent 
with these principles.  
 
The true alpha diversities are the numbers equivalents of the alpha components of these 
indices. The numbers equivalents of all alpha diversities of a given order q are equal; this 
was not true under the traditional definition of alpha. This leads to the surprising 
simplification discussed in Section 6.  
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The beta components  of some common diversity indices are (from Eq. 8a-g): 
Species richness: Hβ = Hγ / Hα      (15a-g) 
Shannon entropy: Hβ = Hγ - Hα
Exponential of Shannon entropy: Hβ = Hγ / Hα
Gini-Simpson index: Hβ = ( Hγ - Hα)/(1 - Hα).      
Simpson concentration: Hβ = Hγ / Hα
HCDT entropies: Hβ  = (Hγ - Hα)/( 1 - (q-1)(Hα))      
Renyi entropies: Hβ = Hγ - Hα
 
The true beta diversities are the numbers equivalents of these components. The true beta 
diversities can also be calculated directly from the generalized Whittaker’s law, by 
converting the diversity index’s gamma and alpha components to numbers equivalents 
(true diversities) and dividing, as Whittaker (1972) and MacArthur (1965) suggested for 
species richness and Shannon entropy.  
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Figure 1. Beta versus alpha for two equally-weighted communities with no species in common. The 
additive definition Hγ = Hα + Hβ yields a beta component which is strongly dependent on the alpha 
component when it is applied to the Gini-Simpson index. The new beta component derived here for the 
Gini-Simpson index, defined by the relation Hγ = Hα + Hβ - HαHβ, is independent of alpha. (Modified from 
Jost 2006.) 
 
Case 2: Alpha and beta when community weights may be unequal 
 
Ecologists commonly need to calculate the alpha and beta diversity of a landscape. The 
community or sample weights will usually be unequal in this application. In this kind of 
application the unequal sizes of the different communities play an essential role in the 
outcome; for a given set of distinct communities, beta diversity is smallest when one 
community dominates the landscape, and largest when all communities share the 
landscape equally. When weights may be unequal, most diversity indices cannot be 
decomposed into independent alpha and beta components which satisfy Lande’s 
condition that alpha never exceed gamma (Property 5 above). If alpha is not to exceed 
gamma when weights are unequal, only two values of q are permissible, q = 0 and q = 1. 
[Proof 3.]  
 
When q = 0, the diversity index is species richness or its monotonic transformations. Its 
alpha diversity (Eq. 11a) reduces to 0Dα = (1/N)(S1 + S2 + ...SN),  which is always less 
than or equal to the gamma diversity Stot. However, this expression weighs each 
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community equally regardless of its true weight, so it is not a satisfactory measure when 
community weights are important.  
 
When q = 1, the diversity index is Shannon entropy (or any monotonic transformation of 
it). This always satisfies Lande’s condition that alpha not exceed gamma, because it is a 
concave function (Lande 1996). Its numbers equivalent, the true alpha diversity, is given 
by Eq. 11b, the exponential of the traditional alpha Shannon entropy. Therefore, when 
weights may be unequal, Shannon measures (q = 1) are the only diversity measures  that 
can be decomposed into independent alpha and beta components satisfying Properties 1-
5 above. “One expects that deductions made from any other information measure, if 
carried far enough, will eventually lead to contradictions” (Jaynes 1957). 
 
 
6. Traditional diversity indices are superfluous 
 
Jost (2006) showed that for diversity analyses of single communities, most traditional 
diversity indices are superfluous. Their numbers equivalents are the biologically 
meaningful entities, and these could be expressed more simply and directly in terms of q 
and the basic sums qλ, rather than calculating indices and then converting these to their 
numbers equivalents. This conclusion can now be extended to multiple-community 
diversity analyses when the communities have equal weights (the only case for which 
there is a choice of diversity measures other than Shannon measures).  In fact the 
unifying mathematics works even when weights are unequal, but non-Shannon measures 
are prohibited in this case because alpha could exceed gamma.  
 
The new expression for true alpha diversity, Eq. 11 (the numbers equivalent of the 
properly-defined alpha component of a diversity index), is a function only of the species 
frequencies, the community weights, and the exponent q; for a given value of q it is 
independent of the diversity index used. The same applies to true gamma diversity (the 
numbers equivalent of the diversity index of the pooled samples), and since true beta 
diversity (the numbers equivalent of the beta component of a diversity index) equals true 
gamma diversity divided by true alpha diversity for all standard diversity indices, true 
beta diversity also depends only on the species frequencies, the community weights, and 
q. Diversity indices are therefore superfluous; for a given value of q, all standard 
diversity indices give the same final numbers equivalents. For example the Gini-Simpson 
index, the Simpson concentration, the inverse Simpson concentration, the Renyi entropy 
of degree 2, and the Hurlbert-Smith-Grassle index with m = 2 all give exactly the same 
true alpha, beta, and gamma diversities for any given set of communities. These indices 
can therefore be bypassed and the final numbers equivalents can be formulated more 
simply in terms of q and the sums qλ. For the purpose of calculating true alpha, beta, and 
gamma diversities (numbers equivalents), indices add nothing except unnecessary 
calculations.  
 
In the index-free description of diversity, with all community weights equal (the only 
case in which non-Shannon measures are valid), for q ≠ 1 the alpha sum qλα  is the mean 
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∑
=

S

1i
i1 + pi2 + ...+ piN) q]). These are transformed into true 

alpha, beta, and gamma diversities of order q (for q ≠ 1) using Eq. 2,  and Whittaker’s 
law is used to find the true beta diversity: 
  Alpha diversity of order q: qDα = qλα 1/(1-q)     (16a-c) 
  Gamma diversity of order q: qDγ = qλγ 1/(1-q)    

  Beta diversity of order q:  qDβ = qDγ / qDα = (qλγ /qλα)1/(1-q) ≡ qλβ 1/(1-q). 
These are undefined when q =1, but their limits exist as q approaches 1, yielding the 
exponential of Shannon alpha, beta, and gamma entropies. The index-free description of 
diversity is therefore continuous in q. In fact the precursors to Eq. 16a-c are all 
mathematically valid even when weights are unequal, and their limits as q approaches 
unity give (see Eq. 11b):    
  1Dα = exp[-w1∑

=

S

1i

(pi1 ln pi1 ) + - w2∑
=

S

1i

(pi2 ln pi2 ) + ...]  (17a-c) 

  1Dγ = exp[∑ -(w
=

S

1i
1pi1 + w2pi2 + ...) ln(w1pi1 + w2pi2 + ...)]   

  1Dβ = 1Dγ / 1Dα         
It is remarkable that all of Shannon’s information functions come out of this theory 
automatically without reference to information theory. As shown earlier, these Shannon 
measures, Eqs.15a-c, are the only meaningful diversity measures (the only ones satisfying 
the properties of Section 2) when community weights are unequal.  
 
 
7. Relation between the new beta diversity and indices of community 
similarity and overlap  
   
Beta diversity is inversely related to most concepts of community similarity. Suppose we 
are comparing the compositional similarity of a set of N communities. The sizes of the 
communities are irrelevant to this comparison and so their statistical weights are taken to 
be equal. If the equally weighted communities have a high compositional similarity, then 
the set of communities must have a low beta diversity. Conversely if the communities 
have low similarity, their beta diversity must be high. The relation can be made rigorous: 
if conclusions based on a similarity, overlap, or homogeneity measure are to be logically 
consistent with (not contradict) conclusions based on a given diversity measure, then the 
similarity measure must be a monotonic transformation of the diversity measure’s beta 
diversity. [Proof 4.] Different kinds of transformations of beta diversity will illuminate 
different aspects of its behavior. Each transformation generates an infinite family of 
similarity measures parameterized by q, which controls the sensitivity of the measures to 
rare or common species. The most popular similarity and overlap measures of ecology 
are in fact transformations of the new beta diversity qDβ.  
 
The true beta diversity of order 1, the numbers equivalent of beta Shannon entropy, can 
be transformed into MacArthur’s (1965) homogeneity measure:  
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It answers the question, "What proportion of total diversity is found within the average 
community or sample?" For N equally-weighted communities, it can be generalized to 
other values of q: 
   M = 1/ qDβ        (19)  
which ranges from 1/N (when all communities are completely distinct) to unity (when all 
communities are identical).  
 
The lower limit of this simple homogeneity measure depends on the number of samples 
or communities. It would be easier to interpret and more useful in comparisons if its 
lower limit were zero. For N equally weighted communities the measure 
   qS = (1/qDβ - 1/ N)/ (1-1/N)     (20) 
is the simplest linear transformation of 1/qDβ which has this property. It is zero when all  
N communities in the region are completely distinct from each other, and is unity when 
all N communities are identical in species composition. It is linear in the proportion of 
regional diversity contained in the average community. Jost (2006) shows that when this 
measure is applied to a pair of equally-weighted communities, it produces the Jaccard 
index when q = 0, and the Morisita-Horn index when q = 2. Equation 20 may be 
considered the generalization of these similarity measures to N communities and to 
arbitrary values of q. 
 
Shannon measures (and only Shannon measures) are valid not only when statistical 
weights are equal but also when they are unequal, and in that case MacArthur’s measure, 
Eq. 18, is still a valid measure of regional homogeneity. Its minimum value is  

   1/ exp[-∑ (w
=

N

1j
j ln wj )] ≡ 1/1Dw                                  (21) 

which is the reciprocal of the numbers equivalent of the Shannon entropy of the weights. 
It takes this value when all communities are completely distinct. Its maximum value is 
unity when all communities are identical. This homogeneity measure can therefore be 
converted into a relative index of homogeneity that goes from 0 (all communities 
distinct) to unity (all communities identical), like Eq. 20: 
  Relative homogeneity = (1/1Dβ - 1/ 1Dw)/ (1-1/1Dw).   (22) 
This measure, like Eq. 18, is useful in the interpretation of the results of additive 
partitioning using Shannon measures.  
 
A direct measure of pairwise community overlap is often the most easily interpreted 
similarity measure. For this purpose the weights of the two communities are irrelevant 
and are taken to be equal. The new beta diversity can be transformed into such a measure 
of overlap:                                                                        
  Overlap (of order q) ≡ [(1/ qDβ) q-1

 – (1/2)q-1] / [1– (1/2)q-1].  (23) 
 Jost (2006) shows that when this measure is applied to a pair of equally weighted 
communities, it produces the Sørensen index when q = 0 and the Morisita-Horn index 
when q = 2. In the limit as q approaches unity it becomes  
  Overlap of order 1 = (ln 2 - Hβ Shannon) / ln 2    (24)  
which is the Horn index of overlap, the only measure of overlap that does not 
disproportionately favor either rare or common species. For all values of q, Eq. 23 and 24  
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are true overlap measures in the sense of Wolda (1981): when applied to two 
communities each consisting of S equally common species, with C species shared 
between the communities, they give C/S, the proportion of a community’s species which 
are shared.  
 
Alternatively, for multiple equally-weighted communities, true  beta diversity can be 
transformed into the turnover rate per sample (generalizing Harrison et al. 1992) by 
taking  
          (qDβ-1)/(N-1).     (25)  
where N is the number of samples. This ranges from zero (no turnover between samples) 
to unity (each sample is completely different from every other sample). 
 
All similarity measures based on the new beta diversity inherit its independence from 
alpha, a desirable property (Wolda 1981, Magurran 2004). A very large number of 
similarity indices are inconsistent with the beta diversity of any standard diversity index. 
These include the Bray-Curtis index (Bray and Curtis 1957), Canberra metric (Lance and 
Williams 1967), Renkonen index (Renkonen 1938), and many others. Conclusions based 
on such measures can contradict conclusions based on valid diversity indices, and their 
possible dependence on alpha make it difficult to disentangle mathematical artifacts from 
biologically meaningful effects. 
 
Traditional similarity measures have a strong negative bias when sample size is small; 
even two samples from the same population will often appear to be dissimilar according 
to these measures (Lande 1996). Expressing a similarity measure as a transformation of 
beta helps solve this problem, since beta is a simple function of alpha and gamma, and 
almost-unbiased estimators of alpha and gamma exist for many diversity measures  (e.g. 
Chao and Shen 2003).  
 
 
8. Examples 
 
Tundra and rainforest revisited  
 
The new measures give very different results than the traditional measures when applied 
to the examples of the Introduction. The traditional Gini-Simpson “beta” for the two 
intercontinental rainforest samples was 0.9861 - 0.9721 = 0.014, paradoxically lower than 
the “beta” diversity of the homogeneous antarctic tundra. This “beta” does not, by itself, 
tell the amount of turnover between samples, because of its dependence on alpha (Fig. 1). 
Depending on alpha, a “beta” value of 0.014 can mean that the samples are nearly 
identical, somewhat similar, or completely different. The similarity measure commonly 
used with the additive definition,  Hα/Hγ or 1- (Hβ/Hγ) (Lande 1996), does not resolve this 
ambiguity. For the intercontinental rainforest data set, using the Gini-Simpson index, this 
“similarity” between samples is 0.99, even though the samples share no species. (The 
measure would have a value of 1.00 if both communities were identical in species 
composition and frequency.) This “similarity” between completely distinct 
intercontinental rainforests is even greater than the “similarity” between the 
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homogeneous tundra samples (0.95).  
 
The new Gini-Simpson beta component is, by Eq. 15d,  (Hγ - Hα)/(1- Hα) = (0.9861 - 
0.9721)/(1- 0.9721) = 0.50. This new beta has a different character than the tradition 
“beta”. Using this method (which is standard in most sciences; Aczel and Daroczy 1975, 
Tsallis and Brigatti 2004, Keylock 2005) a Gini-Simpson index of 0.5 has the same 
absolute and invariable interpretation whether it comes from the alpha, beta, or gamma 
component of the index. The interpretation is given by its numbers equivalent, which is 
(from Table 1) 1/(1-0.50) = 2.0. Thus a Gini-Simpson index of 0.50 is always, in any 
context, the amount of diversity produced by 2.0 equally-likely, completely distinct 
alternatives. In the context of this beta diversity calculation, it correctly indicates that 
there are two equally-weighted completely distinct intercontinental rainforest samples in 
the data set.  
 
The calculation of true beta diversity of the rainforest samples using Shannon entropy 
(the order 1 diversity measure) is similar to the calculation using the Gini-Simpson index. 
The beta component of the Shannon entropy is (by Eq. 15b) Hγ-Hα, which is 0.6931. A 
Shannon entropy of 0.6931 has the same interpretation no matter where it came from. As 
always, this interpretation is given by its numbers equivalent, which is (from Table 1) 
exp(0.6931) = 2.0. A Shannon entropy of 0.6931 is always the amount of diversity 
produced by 2.0 equally-likely, completely distinct alternatives. Here it indicates that 
there are two equally-weighted completely distinct intercontinental rainforest samples in 
the data set. The agreement with the Gini-Simpson result is not an accident; the numbers 
equivalent of the correctly-calculated beta component of any standard diversity index will 
be 2.0 for this data set, because the data set consists of two equally large completely 
distinct samples.  
 
In the new approach the antarctic tundra samples always have a lower beta diversity than 
the intercontinental rainforest samples, in contrast to the traditional approach which ranks 
them in reverse when using the Gini-Simpson index. The new beta component of the 
Gini-Simpson index for the antarctic samples is (0.4199-0.400)/(1-.400) = 0.03 and its 
numbers equivalent, the true beta diversity of order 2, is 1.03. By this measure there are 
effectively only 1.03 distinct communities in this data set, meaning that the two samples 
are almost identical. The beta Shannon entropy is 0.02 and its numbers equivalent, the 
true beta diversity of order 1, is exp(.02) = 1.02. By this measure also the samples are 
almost identical. The beta component of species richness is 1.0, which is its own numbers 
equivalent.  By this measure the communities are truly identical (since they share all 
species and this measure ignores frequencies). 
 
As shown in Section 6, traditional diversity indices are superfluous and the true 
diversities of any order q can be calculated directly from the basic sums qλ (or, for q =1, 
from Eq. 17a-c). For example, instead of using the Gini-Simpson index to calculate 
alpha, beta, and gamma diversities of order 2, we can calculate them more simply as 
follows: 
 2λ1 (Panamanian rainforest sample) = 0.049171219 
2λ2 (Malaysian rainforest sample) = 0.00656619 
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2λ γ (pooled samples) = 0.013941 
The true beta diversity of order 2 is therefore (Eq.16c): 
   (qλγ /qλα)1/(1-q) = (0.013941 / 0.0278839) 1/(1-2) = 2.000 
in agreement with the Gini-Simpson result. For any data set, all order 2 diversity indices 
will always give the same true beta diversity (the numbers equivalent of its beta 
component) as this direct index-free calculation. In general the results will depend on the 
order q, but if the samples are completely distinct (as in this case), or if they are perfectly 
identical, the results will be the same for all q. 
 
The similarity measures given in Section 7 are helpful in interpreting the new beta 
diversity. For the intercontinental rainforest samples, for any standard diversity index the 
proportion of regional diversity contained in the average community (Eq. 19) is 1/2;  the 
similarity measure Eq. 20 is zero, and the overlap between communities (Eq. 23) is also 
zero. The turnover rate per community (Eq. 25) is 1.00 for any index, indicating complete 
turnover between communities. 
 
 These same measures clearly show that the antarctic communities are homogeneous. For 
the true diversity of order 2 the beta diversity equals 1.03, so the proportion of regional 
diversity contained in the average community (Eq. 19) is 0.97; the similarity measure Eq. 
20 is 0.94, and the overlap between communities (Eq. 23) is also 0.94. The community 
turnover rate (Eq. 25) is 0.03, indicating that there is almost no turnover between these 
communities. 
 
Beta diversity of a landscape, and analysis of heirarchical diversity components 
 
In the previous example the statistical weights of the two communities in each data set 
were taken to be equal; this meant we could legitimately use the full range of diversity 
indices rather than just Shannon measures (Case 1 of Section 5). This is not the case 
when calculating the alpha, beta, and gamma diversities of a landscape, where population 
density is not uniform, resulting in unequal statistical weights for different samples or 
communities (Case 2 of Section 5). The proofs of Sections 4 and 5 show that under these 
circumstances only Shannon measures can be decomposed into meaningful independent 
alpha and beta components. The additive definition of beta is valid for Shannon entropy 
(Eq. 8b), so the standard techniques of additive partitioning can be used with this index 
(but only with this index) to study the heirarchical partitioning of diversity (within-
samples, between samples within communities, between communities, etc). One 
modification is necessary; the final results need to be converted to their numbers 
equivalents, the exponentials of Shannon alpha, beta, and gamma entropies, before they 
can be properly interpreted. Thus Lande’s similarity or homogeneity measure Hα/Hγ must 
be replaced by MacArthur’s measure, exp(Hα)/exp(Hγ); otherwise the “similarity” value 
will be inflated as in the intercontinental rainforest example above. MacArthur’s measure 
correctly gives the proportion of regional diversity contained in the average sample. The 
relative homogeneity, Eq. 22, is also useful in analyzing the results. (Alternatively, the 
entire partitioning could have been done multiplicatively using the numbers equivalents 
from the beginning.The results are the same.)  

 17



Jost: Partitioning diversity 

696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 

 
 
9. Conclusions 
 
Limitations of additive partitioning of diversity 
 
Additive partitioning of diversity into heirarchical components (Lande 1996; see Veech 
et al. 2002 for a complete review of its history) is a popular method of diversity analysis, 
in which beta is compared between different heirarchical levels. However, the technique 
only makes sense if the beta it produces is independent of alpha; if beta depends on alpha, 
the beta values between different heirarchical levels cannot be compared with each other 
(since each level has a higher alpha than the preceding level) nor with the beta values of 
other ecosystems with different alpha values.  
 
The proofs of Sections 4 and 5 show that when community statistical weights differ  the 
only index which can be additively partitioned into independent alpha and beta 
components is the Shannon entropy. The frequently recommended Gini-Simpson index 
cannot be used; its decomposition into independent alpha and beta components is only 
possible when the statistical weights of all samples are equal, and even then the 
decomposition is not additive. 
 
Also, for many diversity indices (including Shannon entropy and the Gini-Simpson 
index) the similarity measure used with additive partitioning, Hα/Hγ, necessarily 
approaches unity for high-diversity ecosystems, regardless of the amount of 
differentiation between samples. If the Gini-Simpson index is used as the diversity 
measure, it is mathematically impossible for the “similarity” to be lower than the alpha 
“diversity”. This happens because Hγ for this index is strictly less than unity; therefore 
the quotient Hα/Hγ must always be greater than Hα. Since Hα for this index often exceeds 
0.95 in tropical ecosystems, a set of tropical samples will often have a Gini-Simpson 
“similarity” greater than  0.95 even if they have nothing in common (i.e. even when they 
are completely distinct in species composition and frequencies). This measure should not 
be used to draw conclusions about differences in composition between samples (contrary 
to the recommendations of Veech et al. 2002 and contrary to the practices of most of the 
studies cited therein).  
 
The importance of numbers equivalents 
 
Many biologists think of diversity indices simply as intermediate steps in the calculation 
of statistical significance. On this view, one measure of diversity is as good as another, as 
long as it can be used to calculate the statistical significance of the effect under study. A 
moment's reflection, however, shows that this is not reasonable. A very tiny bias in a coin 
can be detected at any desired significance level if enough trials are made, but it is still an 
insignificant bias in practice. The statistical significance of an effect has little to do with 
the actual magnitude or biological significance of the effect, which is the really important 
scientific question.We therefore need measures that behave intuitively so that we can 
judge changes in their magnitudes.  
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Ecologists’ intuitive theoretical concept of diversity corresponds not to the raw values of 
diversity indices but to their numbers equivalents (Hill 1973, Peet 1974, Jost 2006). 
Converting diversity indices to their numbers equivalents allows us to judge changes in 
their magnitude, because numbers equivalents posess the “doubling” property (Section 3) 
that characterizes our intuitive concept of diversity. When alpha, beta, and gamma are 
expressed as numbers equivalents, their magnitudes have simple intuitive interpretations 
in terms of the number of equally common species or the number of distinct equally large 
communities; it is easy to visualize these and easy to judge the importance of changes in 
their magnitudes. Numbers equivalents let us move beyond mere statistical conclusions. 
 
Numbers equivalents correct the anomalous behavior of the “similarity” measure Hα/Hγ 
described above; converting the raw alpha and gamma indices in this ratio to their 
numbers equivalents produces a similarity or homogeneity measure, qDα /qDγ, that 
accurately reflects the proportion of regional diversity contained in the average sample. 
This measure equals 1/N when applied to N equally-weighted, completely distinct 
samples, no matter which diversity index is used and no matter what the species 
frequencies, so it provides an absolute benchmark from which to judge the distinctness of 
a set of samples. Equation 20 transforms this onto the interval [0,1]. 
 
All standard diversity indices of a given order group communities into the same "level 
surfaces" and differ only in the way they label these level surfaces. It is therefore 
reasonable to standardize on the labelling system that gives the most intuitive results, the 
numbers equivalents; in doing so we are not ignoring the many other aspects of 
compositional complexity but rather converting them all to common and intuitive units.  
 
Numbers equivalents also provide a powerful mathematical tool for proving index-
independent theorems of great generality. The most interesting of these theorems is the 
main result of this paper, a generalization of Whittaker’s law: if alpha and beta 
components of a diversity index are independent, their numbers equivalents must be 
multiplicative. That is, the product of their numbers equivalents must give the numbers 
equivalent of the gamma diversity index.  
  
Numbers equivalents reveal a deep unity between all standard diversity indices. The 
numbers equivalents of all of them are given by a single equation (Eq. 2). The numbers 
equivalents of standard diversity indices also generate and unify the standard similarity 
and overlap indices of ecology (Section 7).  
 
New alpha and beta versus old 
 
For most non-Shannon indices, the traditional additive beta component was not 
independent of the alpha component, and had no special value when all communities 
were distinct. The “numbers equivalent” of the beta component of an index bore no 
relation to the “numbers equivalents” of the alpha and gamma components of that index. 
The beta component often did not use the same metric as the alpha component, in the 
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sense that a given number denoted different amounts of diversity or uncertainty 
depending on which component it came from.  
 
These anomalies are corrected by the new alpha and beta components of diversity 
indices. For N equally-weighted communities (the only case for which non-Shannon 
indices are valid), the new alpha components of all non-Shannon standard diversity 
indices are given by Eq. 12 (the alpha Shannon entropy is the same as the traditional 
one); the new beta components of the most common diversity indices are given by Eq. 
15a-g. These alpha and beta now use exactly the same metric as gamma, and beta 
provides complete information about the relative degree of community complementarity, 
without confounding this with alpha.  
 
Converting these new alpha and beta components of a diversity index to their numbers 
equivalents makes them easily interpretable. For N equally-weighted communities (the 
only case for which non-Shannon indices are valid), the numbers equivalent of Hβ for any 
standard diversity index has a uniform interpretation, indicating the effective number of 
distinct communities in the region, which ranges from 1 to N. When there are N distinct 
equally-weighted communities, this true beta diversity is always N, regardless of the 
index used and regardless of the species frequencies. 
 
Diversity is most easily analyzed by bypassing traditional diversity indices and 
calculating the alpha, beta, and gamma numbers equivalents directly, using Eqs. 16 and 
17.  The numbers equivalents deserve to be considered the true alpha, beta, and gamma 
diversities (of order q) of the system under study. The order q determines the emphasis on 
the dominant species (with q greater than 1 emphasizing dominant species). 
 
Importance of Shannon measures 
 
Shannon measures are the only standard diversity indices that can be decomposed into 
meaningful independent alpha and beta components when community weights are 
unequal. Shannon measures do not need to be borrowed from information theory; the 
exponential of Shannon entropy and related functions are derived here from the natural 
conditions on beta discussed in Section 2. 
 
An often-repeated criticism of Shannon measures is that they have no clear biological 
interpretation. Shannon entropy does in fact have an interpretation in terms of 
interspecific encounters (Patil and Taillie 1982), and both HShannon and exp(HShannon) can 
be related to characteristics of maximally-efficient species keys (Jost 2006) and to 
biologically reasonable notions of uncertainty (Shannon 1948) and average rarity (Patil 
and Taillie 1982).  
 
Some authors (e.g. Lande 1996, Magurran 2004) recommend the Gini-Simpson index 
over Shannon entropy on the grounds that the former converges more rapidly to its final 
value and has an unbiased estimator. However, the Gini-Simpson index and all other 
order 2 indices emphasize dominant species (which is why it converges more rapidly to 
its final value), and this may not always be desirable. Furthermore, since the Gini-
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Simpson index cannot generally be decomposed into independent alpha and beta 
components which satisfy Lande’s condition that alpha never exceed gamma, it cannot be 
used for studies that involve landscape alpha or beta. (It --or rather its numbers 
equivalent-- is fine for studies comparing communities directly, using equal statistical 
weights, when it is desired to emphasize the dominant species.) The recent development 
of a nearly unbiased nonparametric estimator for Shannon entropy (Chao and Shen 2003) 
makes sampling criticisms less relevant. This nonparametric estimator for Shannon 
entropy converges rapidly with little bias even when applied to small samples.  
 
Some authors who are critical of Shannon measures because of their sampling properties 
(e.g. Magurran  2004) recommend species richness and its associated similarity and 
overlap measures, the Jaccard and Sorensen indices. These measures have worse 
sampling properties than Shannon measures (Lande 1996, Magurran 2004). Since they 
are completely insensitive to differences in species frequencies, they are poor choices for 
distinguishing communities or comparing pre- and post-treatment diversities, and they 
converge more slowly than any other measure as sample size increases. They are also not 
ecologically realistic; ecologically meaningful differences between communities are 
matters of differences in species frequencies, not in their mere presence or absence. 
Communities almost always have rare vagrants, but presence-absence measures give 
them the same weight as shared dominant species in calculating the similarity or overlap 
of two communities. Frequency data provide important information that should be used 
when available. The new expressions for alpha and beta remove the anomalies of the 
traditional definitions, and the conversion of properly-defined frequency-based measures 
to their numbers equivalents makes them linear with respect to our intuitive ideas of 
diversity. They are now almost as easy to interpret as species richness, and much more 
reliable and informative. The same is true for similarity and overlap measures; the Horn 
index of overlap (Eq. 24) is more informative, discriminating, and reliable than either the 
Jaccard or Sorensen indices.  
 
Species richness beta 
  
Much landscape data consists only of presence/absence records, which force us to use 
species richness as our diversity measure. The proofs of Section 5 show that species 
richness can only be partitioned into independent alpha and beta components if we treat 
each sample with equal statistical weight, and use Whittaker’s multiplicative formula. 
Only then will alpha, beta, and gamma satisfy the essential properties 1-5 described in 
Section 2. This beta diversity is not really a characteristic of the landscape but rather a 
direct measure of compositional similarity between N samples (without regard to their 
relative sizes). As such it is equivalent to the N-community generalization of the 
Sorensen or Jaccard indices, which are independent of alpha. The turnover rate (0Dβ-
1)/(N-1) (Harrison et al.1992) is also independent of alpha and is a useful measure of 
regional heterogeneity.  
 
Scope of these results 
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The proof that Shannon measures are the only ones that can always be decomposed into 
meaningful independent alpha and beta components applies only to the class of standard 
diversity indices, as defined in Section 3. A few nonparametric diversity measures used 
in biology are excluded from this proof because they do not belong to this class. The 
Hurlbert-Smith-Grassle index for m  > 2 is such a measure, since it cannot generally be 
written in terms of 

878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 
901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 

qλ. Although nothing in the present  paper excludes the possibility that 
this index may be decomposable into meaningful independent alpha and beta components 
when m is greater than 2, the index does fail to decompose when m = 2, and it seems 
unlikely that higher values of m would change this property. 
 
While Fisher’s alpha is not strictly a nonparametric index, it is sometimes used as if it 
were (Magurran 2004). The results presented here do not exclude the possibility that it 
could be decomposed into meaningful independent alpha and beta components for data       
from a log series distribution. However there are strong reasons to avoid this index for 
general use. When the data are not log-series distributed this index is difficult to interpret, 
and as it is usually calculated (Magurran 2004) it throws away almost all the information 
in the sample (since it depends only on the sample size and the number of species in the 
sample, not the actual species frequencies). For example, a sample containing ten species 
with abundances  
[91, 1, 1, 1, 1, 1, 1, 1, 1, 1]   
has the same diversity, according to this method of calculating  Fisher’s alpha, as a 
sample containing ten species with abundances  
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10], whereas ecologically and functionally the second 
community is much more diverse than the first. 
 
Relation of the new alpha and beta to results in other sciences 
 
Since 1988 physicists have begun to use new measures of entropy such as the HCDT or 
Tsallis entropy, which includes as special cases the standard diversity indices of biology: 
Shannon entropy, the Gini-Simpson index, and species richness minus one (Keylock 
2005). Physicists have recently proposed a new definition of alpha or conditional HCDT 
entropy (Tsallis et al. 1998, Abe and Rajagopal 2001; in physics and information theory, 
the ecologists’ alpha is called the “conditional entropy”) which is identical to the 
expression  that I have derived here (Eq. 10) from very different premises. They were led 
to this new definition of conditional or alpha entropy by thinking about theoretical issues 
in nonextensive thermodynamics, such as the thermodynamics of black holes and 
quantum-mechanical systems. Jizba and Arimitsu (2004) have proposed a definition of 
Renyi conditional entropy for thermodynamics, and this also turns out to be the same 
definition of alpha entropy that I have derived here. It is remarkable that studies of stars, 
electrons, and butterflies converge on these same expressions.  
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